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1. INTRODUCTION

The parametric adjustment model expresses each of the observables In terms

of parameters, where the structure linking the two groups of variables is, in

general, nonlinear. The number of observables is denoted by n and the number of

parameters by u, where n must be greater than u for an adjustment to take place.

The adjustment model Is written as

La = F(Xa ) ,

where La and Xa are the sets (column vectors) of adjusted observatjons and

adjusted parameters, respectively. This study addresses the resolution of a

nonlinear model through an isomorphic geometrical setup with tensor structure

and nctation. Such efforts date back to [Blaha, 1984], which treats a linear or

linearized adjistment model. An initial analysis of a nonlinear model can be

found In [Blaha, 1987].

In a standard adjustment approach, a nonlinear adjustment model is subject

to the Taylor series expansion based on an Initial set of parametric values, X° .

The terms in the second and higher powers of the parametric corrections are

neglected, resulting in the familiar (linearized) observation equations. In

matrix notation, the latter are expressed by

V = AX + L ,

where A is the design matrix, X=X a-X is the column vector of parametric

corrections, V=La-Lb is the column vector of residuals, and L=L 0 -L b Is the0I
column vector of constant terms, with L°=F(X° ) containing the values of

observables consistent with the initial set of parameters and Lb containing the

actual observations. The linearized model Is subjected to the least-squares

criterion

VT P V = minimum,

where P is the weight matrix of observations. This criterion leads to the

formation of the familiar normal equations.

If the original adjustment model Is nonlinear, the resolution of the

linearized model does not yield the final answers. The process is usually

repeated with new, updated parameters and the corresponding changes in A and L.

However, the variance-covartance matrix of observations, £, as well as the



weight matrix P, adopted as PE- 1, are independent of the parameters. Thus, the

matrix of normal equations, N=AT PA, changes only due to A, and the column

vector representing the right-hand side of normal equations, U=-AT PL, changes

only due to A and L. The computation of the updated parametric values through a

new X requires the formation and the Inversion of a new N In each Iteration, or

a mathematically equivalent procedure. When X becomes sufficiently close to

zero the Iterative process Is terminated. As its by-product, the latest matrix
-1

N is adopted as the variance-covariance matrix of adjusted parameters.

The functional relationship between the observables and the parameters

lends itself to a geometrical interpretation and treatment involving spaces and

surfaces generalized to higher dimensions. In particular, the parametric

adjustment model symbolized by

r r ua
Sx (U ) , r = 1,2,...,n, a = 1,2,...,u

can be linked to the Gauss form of a surface in relation to the surrounding
r a

space, where x are the space coordinates and u are the surface coordinates.

The Gauss form of a two-dimensional surface (u-2) embedded In a three-

dimensional flat space (n=3) is described, together with two other forms, in

Chapter 6 of [Hotine, 1969]. In (Blaha, 1984], both the n-dimensional

"observational" space and the u-dimensional "model" surface were considered

flat. The latter was thus in reality a hyperplane. Although the model surface

is now intrinsically a curved space, the surrounding space will be seen to be

again flat.

In general, a flat space can be described via Cartesian coordinates. In a

Cartesian coordinate system, a given point is depicted by a set of coordinates
r

x , r=],2,....n, which can be interpreted as its position vector expressed by
r. r

contravarlant components, p x . Considered as a tensor, and thus as a point

function, pr is associated with this given point (and not, for example, with the

origin). Accordingly, If the space coordinates are Cartesian, the above model

equation x r.x r (u a) will express a family of position vectors associated with the

model surface. Any of these position vectors could be freely parallel-

transported to any location in space, e.g. to the surface point P described by
r r( a an
X x (u ), and could eventually give rise to tensor equations there.

0 0
Although derived In Cartesian coordinates, such equations would be valid in any

coordinates applicable to a flat space.
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In an important extension of the above discussion, we state that if

gsr = constant ,

where gsr is the space metric tensor, x r(ua ) can again be interpreted as a

family of position vectors associated with the model surface embedded in a flat

space. Thus, although the space coordinate system cannot be general for such an

interpretation to hold true, It is not required to be Cartesian. The position

vectors can again be parallel-transported to the point P or any other location

without changes In their components (contravariant as well as covariant), which

Las been referred to as "free" parallel transport. This stems from the fact

that such changes are expressible in terms of the Christoffel symbols formed

through partial derivatives of the space metric tensor.

Among all possible space coordinate systems, only those characterized by a

constant metric tensor will be relevant to our development. Accordingly, x r(ua

will be interpreted as a family of position vectors associated with the model

surface, any of which can be freely parallel-transported to a chosen location.

The foregoing Is meant to elucidate the isomorphism of adjustments and geometry.

At the same time, it has led us to appreciate the qualitative difference between

the two contexts. In the first context, the model equation x r=x r(u provides

restrictions on adjusted observations of a general kind, where all the

quantities and relationships can be completely void of any geometrical meaning.

In the second context, it provides restrictions on position vectors in space,

which is a purely geometrical phenomenon. However, studying one scientific

discipline In terms of another, even seemingly disparate, may lead to unforesepn

benefits and a deeper understanding of both.

3



2. GEOJIETRICAL SETUP

r
In denoting the n observables by x , r=1,2,....n, and the u unknown

a
parameters by u , a=l,2. u, w. can represent a nonlinear parametric

adjustment model by

r Xr (ua) = Xr + Ar A u a + (I/2) r A U a AuA
0 a a

* (1/6) *r AUa Aup AuT + (1a)cg~r

Au a u - u , (Ib)

a r ra
where ua represents an initial set of parameters and x=x (u°) represents

the observables consistent with this set. Throughout this study, the lower-case

Roman indices range from I to n, and the lower-case Greek indices range from I

to u. Tensor symbolism implies the summation convention over the dummy

(repeating) indices.

In the geometrical context, the first equality in (la) represents the Gauss

form of a u-dimensional sur.7ace embedded in an n-dimensional space. The surface

is endowed with the coordinate system {u a), a=1,2,....u and is referred to as

the model surface, and the space is endowed with the coordinate system 
(x r,

r=1,2_. n, and Is referred to as the observational space. The second equality

Jn (1a) is the Taylor series expansion of xr from the "initial" point P lying in
a

the model surface, whose model-surface coordinates are u and whose
0

observational-space coordinates are xr. The notation identifying the partial

derivatives at P, such as 8xr /aua Ar, a 2 rlaaA=or etc., is self-
a g

evident. Thp actual observations can be thought of as describing the point Q in

the observational space, which, due to measuilag crrirs, s not lie in the

known model surface. The task at hand consists in determining, from the

observed point Q, a model-surface point satisfying the least-squares criterion.

In the adjustment context, the variance-covariance and the weight matrices

of observations depend on the quality of measurements. They are independent of

the adjustment model, of the initial set of parameters, of the outcome of

obser,,ations, etc. Thus, for a given observational mode they are constant. In

the "traditional" Identification of (Blaha, 19841, variance-covarlance matrices

correspond to associated metric tensors, and weight matrices correspond to

metric tensors. Accordingly, we represent the variance-covarlance matrix of

4



rs

observations by the observational-space associated metric tensor g , and the

weight matrix of observations by the observational-space metric tensor g sr' and

state that both tensors are independent of the form of the model surface, of the

Initial point P. of the observed point Q, etc., leading to the simplification

gsr = constant (2)
rs

One could also attribute the tensors g and gsr to the point Q and state that

the geometrical setup must account for Q located anywhere in the observational

space. In turn. (2) implies that the observational space must be flat.

if the set &xr denotes the coordinate differences between the observed

point Q and the desired model-surface point denoted P, it corresponds to the

negative residuals, and the least-squares criterion corresponds to

3- 6 s r minimum (3)

Since (2) allows us to make appeal to Cartesian coordinates, we can consider the

quantities such as x r. Ax r etc., whether Infinitesimal or finite, to be sets

of coordinate differences as well as contravariant vectors in the observational

space, where they can be freely parallel-transported to any location. Moreover,

the quadratic form (3) represents the square of the distance between Q and P.

Therefore, the desired "least-squares" point P must be the foot-point of the

straight line dropped orthogonally from Q onto the model s:urface. This property

is schematically illistr;ited In Fig. 1. where the vector PQ. i.e.. the

geometrical object symbolized by 6x, is drawn perpendicular to the model

surface at P. We note that if any other adjustment condition were used in

lieu of the least-squares criterion, the minimum-distance property (3) would not

exist and the geometric-tensorial treatment oi the ud'j"stment th rt; would

probably be much more complex If not impossible.

rhe model-surface coordinates of the least-squares point P, denoted u

correspond to the adjusted parameters. and its observational-space coordinates,
r

denoted x . correspond to the adjusted observations. (Although this designation
ar

is more restrictive than the notation u and x used in la.b, It need not cause

any confusion.) Furthermore, the surface associated metric tensor at P

corresponds to the variance-covariance matrix of adjustcd parameters, and the

necessary" version of the space associated metric tensor at P corresponds to

the ,Irtgiilr vriarncc-covariance matrix of adjusted observations. Such

5



Q

observational model

space dx surface

/x ( A ~x " ) ( O x

Oxx

Pig. 1

Symbolic representation of a nonlinear parametric least-squares adjustment.

A one-dimensional model surface Is embedded in a two-dimensional observational

space; the parentheses pertain to the solution of the model linearized at P.
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correspondences, as well as the definition of "necessary" tensors, were

presented in Sections 2.2 and 4.2 of [Blaha, 1984]. In the same vein, the

surface metric tensor at P corresponds to the weight matrix of adjusted

parameters, and the "necessary" version of the space metric tensor at P

corresponds to the singular weight matrix of adjusted observations.

These notions confirm the variance-covariance propagation law and introduce

a "weight propagation law", and they can be extended to functions of adjusted

parameters as well as to functions of adjusted observations. In [Blaha, 19841.

hzc%,cr, they were demonstrated only for linear models. In nonlinear models the

above tcsors, expressible by means of orthonormal vectors tangent to the model

surface at P. could be said to describe "tangential", or first-order.

properties of least-squares estl.,ates.

7



3. SOLUTION

3.1 General Development

The adjustment theory assumes that the known values of the initial set of

parameters, represented here by uct, are close to the final values represented
0

by u*. Furthermore, the values of the residuals are also assumed to be small.

For the needs of the current development, we stipulate that quantities will be

considered "small", or first-order, if they behave like differential quantities,

in the sense that a product of two first-order quantities will result in a

quantity smaller by an order of magnitude. The latter will be referred to as a

second-order quantity. In the geometrical context the assumption about ua is
0

maintained, implying that the model-surface coordinate differences between P

and P, in (ib) symbolized by Auo, are small. The same assumption applies also

for the observational-space coordinate differences between these two points,

r =r r (4)
A x -x(40

However, the values in 6x x Q-x , corresponding to the negative residuals,

are subject to no such restriction. This is the first distinction between the

standard and the geometrical approaches to nonlinear models.

The second distinction, which is the cornerstone of our geometrical

approach, is a consequence of (3). Before drawing conclusions from this

minimum-distance criterion, we review the notion of the design tensor,

corresponding in adjustment calculus to the design matrix. In [Blaha, 1984] and

in Section 2.2 of [Blaha, 1987], this tensor was identified with the set of

partial derivatives ax r/aua at the initial point P. and was presented in a

vectorized form. Thus, Ar in (1a) Is the design tensor at P, which can be
a

expressed by means of a set of orthonormal vectors spanning the hyperplane

tangent to the model surface at P:

Ar ax r/au =  Q r + jr i + .... (5)

The above hyperplane Is referred to as the "model plane", and In Fig.l it
r r

Is symbolically represented by a straight line. The notation I . ,...

identifies the orthonormal vectors at P spanning the model plane by their

observational-space contravariant components, while the notation 2 a, j a'

identifies them by their model-surface covariant components. In general, when

"-- 'm'~mn~mmm m •mm 8



Identifying individual vectors as geometrical objects, we remove the indices.

The double identification, such as Ax' and Au written side-by-side In Fig. 1,

depicts one and the same vector ex -ressed In two coordinate systems. The

notions of model surface and model plane are further discussed in Appendix B,

which also describes in detail the role of the design tensor In either manifold.

The design tensor (5) serves in formulating the model-surface metric tensor

at the initial point P as

a s 9 + J ja.+ =A 5 g Ar (6)

$Sa 8 a 0 sr a

Relations similar to (5) and (6) appear in Chapter 6 of (Hotlne, 19691, where

they are derived for n=3 and u=2. Equation (5) provided an early impetus in

treating the adjustment theory via geometry. Its motivating power stems from

the fact that its left-hand side describes the algebraic structure of the design

matrix in tne parametric adjustment model, and Its right-hand side gives this

structure a clearcut geometrical meaning.

In analogy to Ar. the design tensor at P can be formulated as
a

SJr + r ...

a aa

where the overbars identify a set of orthonormal vectors spanning the hyperplane

tangent to the model surface at P. Due to the orthogonality of 6x and the

model surface as dictated by (3), at P we must have

As g r = 0 (7)
A3 gsr

Since A is a mixed space-surface tensor at P, and &x Is a contravariart

space vector at P, the above is a tensor equation at P. This equation

appeared in a similar form .n Section 2.3 of (Blaha, 1987). The orthogonality

condition (7) embodies the above-mentioned second distinction, in that it is a

precise relation whose active exploitation does not have an equivalent in the

qtandard adjustment approach. As has been indicated in the Introduction, the

latter proceeds by iterations, where a set of values approximating Aua is

reflned at each step. When the changes are sufficiently small, the Iterative

process terminates and (7) is satisfied as a by-producL. However, upon seeking

to fulfill this condition at each individual step. the standard approach can be

modified and the Iterative process can be significantly shortened.

9



Since, in the geometrical context, P is assumed to be close to P, a good

approximation to Aua is offered by (Aua), where the parenthesis notation

represents the solution of the linearized model described by (la,b) with

0 r=0, 0r =0 ..... This approximation is, in fact, the initial iteration

of the standard approach. We note that if the values In Bx are so large as

to approach finite quantities, a better approximation to Aua can be obtained in

a different, more general form presented in the next section. In the current

discussion the linearized model corresponds to the situation where the model

plane replaces the model surface. We retain (u ) as the model-plane coordinate

system, and observe that (6) is the plane's constant metric tensor. In analogy

to a statement made earlier in conjunction with the constant space metric

tensor, we can consider the quantities such as (Aua), Aua. etc., whether

infinitesimal or finite, to be sets of model-plane coordinate differences as

well as contravariant vectors in the model plane, where, if need be. they could

be freely parallel-transported to any location.

The model-plane covariant components of the orthogonal 
projection of 6x

r

onto the model plane are obtained with the aid of the design tensor (5);

(A s g xr  (8)
s r

r
where the contravariant vector 6x , known a priori, can be decomposed as

x r  = r X r = (Ax,r) + (Ax,,r)

Q o

In terms of Fig. I, the double identification (Ax') and (Au) designates one and

the same ector PP , Based on (8), we have

(Au') - a' (Au ) (9)

where a" is the model-surface associated metric tensor at P. or the constant

model-plane associated metric tensor, obtained from a according to

0 a
a aO T6

If (Aua ) is considered to be a set of model-surface rather than model-plane

coordinate differences, it gives rise to a surface point which, In Fig. 1, Is

denoted (P). In consulting the figure, we note that in the observational space

10



this point is arrived at by means of the vector (Ax), where

(Axr) = (Ax,r) + (vr)

Topics similar to the above are discussed In Appendix C.

If the adjustment model were linear, the model surface would reduce to the

model plane and (Aua ) would represent the final parametric corrections. The

design tensor (5) would serve to express

(Ax,r ) = A r (Au, )
a

which would yield the adjusted observations as x r+(Ax' r). The negative
0

residuals would be found from

(Ax, r ) = 5xr _ (Ax ,r )

The variance-covariance matrix of adjusted parameters would correspond to aa ,
while the variance-covariance matrix of adjusted observations would correspond

to the necessary associated metric tensor:

g,rs r 2s + j j , + Ar aap A (0a)

a

The weight matrix of adjusted parameters would correspond to aPa and the weight

matrix of adjusted observations would correspond to the necessary metric tensor:

s'r = gjr (lOb)

Furthermore, the variance-covarlance and the weight matrices of residuals would

correspond respectively to

g,rs . rs _ rs gs = gsr - g' (llab)

g ~ ' srsr sr

The above relations were presented in (Blaha, 1984].

In the current nonlinear model, (Au a ) represents the first approximation to

AuO. We remark that in a two- or higher-dimensional model plane the vectors

(Au) and Au are not collinear in general. The set Aua. when considered in the

role of model-surface coordinate differences, gives rise to the desired least-

squares point P (see Fig. 1). In the observational space this point is

obtained by means of the vector Ax, where

Axr . Axer + vr (12a)

11



From (lab) and (4), we express the right-hand side of (12a) by

Ax' r - Ar Aua
, (12b)

a

vr  (1/2) or Au + (1/8) ,r AUa AUp AuT + (12c)

a+ a..r

This outcome is also discussed in Appendix C.

Whether the least-squares point P should be described by the model-

surface coordinates or by the observational-space coordinates via (12a-c), the

values Au a are unknown and unobtainable by closed formulas suck. as (8) and (9)

applicable to the linear model. In view of formulating a useful relationship

for Aua, we first observe that

A r =A r + Ar (13a)
a a a

AAr  Au + (1/2) Au AuT + (13b)
a a a

r r...

where (13b) stems from the fact that at P we have aA r/aup= 
Or

2r 0 a g
a A /au auT=,Or etc. Equations (13a,b) express the design tensor at P

from its counterpart at P. Further, Fig. 1 shows that 6x can be expressed as

dr = 6xr _ Axr (14)

where 6xr is known but Axr determined via Aua in (12a-c), is unknown. This is
r r

a tensor equation at the least-squares point P, to which 6x and Ax can be

freely parallel-transported from the initial point P. The tensors Ar anda
6xr at P are needed in view of (7).

The approximation set (Au ) will be corrected by A(Au ) to yield the

desired set Au a:

Aua = (Aua) + A(Au) (15)

The unknown set A(Au ) will be determined through the precise relation (7). We

stipulate that the level of accuracy in (7) should be of the third order, in the

sense that the neglected terms can only be of the fourth and higher orders. By

a hypothesis common to both the standard and the geometrical approaches, the set

Aua contains small quantities and the set (Aua) represents the main contribution

of Aua. Thus, (Au ) and Au are assumed to contain first-order quantities,

while the set A(Au ) is assumed to contain second-order quantities. Finite

quantities contracted with (Au a)(Aup) are considered to be of the second order,

12



similar to finite quantities contracted with A(Aua). Fourth-order quantities to

be neglected are of three kinds: o[(Au a)(Au)(AuT)(Au )], o[(AUa)(Aug) A(AuT)].

and o[A(Aua ) A(Au)). Since the last kind involves quadratic terms in A(Aua),

the reason for carrying out the solution to the third order becomes clearer.

In considering the known quantities (Aua), similar to (13a,b) we have
(A ) =r r rr

(Ar) = A r (Aug) + (1/2) 0 (A?) (Au) + ...O. (16)
a a ao f

We now form A based on the outcome for (A ):

A= (Ar) A+(A r) (17a)
a a a
r -r a

The set A(A ) can be obtained as A in (13a b) with Au substituted for by

the right-hand side of (15), minus (A ) from (16). This yields

6(Ar) ur AO) + r (Aur) A(Au) + . (17b)a ao O

where use has been made of the symmetry of 0 r  in a, 0, and 7 through

0 Or
r  A(Au )  (Au) #(Au ) A(Au) = 2 r (Au) A(AupaP7 7 (r )  (uT aft

The dots in (17b) represent o[A(Au T ) A(Au )]+o(Au )(Au T ) A(Aug)+ .. . which

are respectively fourth-, fourth-, and higher-order quantities.

Furthermore, similar to (12a-c) we write

(Axr ) = Ar (Aua) + (1/,) r  (Aua) (
a ap aa A

+ (1/6) *r (Aua) (Aug) (AuT ) + .... (18)

rr
In analogy to the above, we form Ax

r based on the outcome for (Ax r):

Axr = (Axr) + A(Axr) (19a)

The set A(Ax ) can be obtained as Ax r in (12a-c) with Aua given by (15), minus

(Axr ) given by (18). This yields

A(&X r ) = Ar A(Aua +r ,a +
a ao ( u, a(auj + (19b)

where we have employed the symmetry of Cr" in a and A through the identity

fr A(u) A r a2a
Qr A(Au a) 

(A u ) + a (Aua) A(Aup) 2 0r (Au ) A(Aua

13



However, due to (16), equation (19b) simplifies to

A(Ax r ) = (A') A(Au = ) +.. (19c)
a

where the dots represent o(A(Au.) A(Au a )J+o((Au8 (tu)(u ) Au(Au') +.... which

are respectively fourth-, fifth-, and higher-order quantities.

Finally, due to (14) and (19a). we can express dr as

axr _ (dxr) - A(Axr) , (20a)

where

(bxr ) = 6xr - (Ax1) (20b)

In terms of (17a) and (20a), the precise relation (7) reads

[(A') + A(A )] g [(6xr) - A(Axr )] 0
I (a ) gsr (ax~r I s sr

or

(A)g (ax) .A( A) g Ox)r
0 sr 0 sr

- (Ars ) g A(Axr- A(A') g A( xr) o (21)

A sr 0 sr

The second, third, and fourth terms on the left-hand side of (21) are denoted

respectively as a, b, and c, and will now be evaluated.

In considering (17b) we obtain

a =a A(AuT )  (6xr )  (Au ) A(Au ) +or gsr ¢ Ara gsr + ..

In analogy to the statement that followed (17b), the dots represent fourth- and

higher-order quantities. However, (6xr) is excluded from influencing this

order. Further, in consulting (19c) we write

b = (A ) g (A ) A(Au') + .
0 sr a

In analogy to the statement that followed (19c), the dots again represent

fourth- and higher-order quantities. Finally. in consulting both (17b) and

(19c) we conclude that

c = o(A(Au r) A(Aua)] + ...

which Is composed entirely of fourth- and higher-order quantities.

14



Upon collecting the results, (21) yields

(A 1g (xr) = (A)g (A -)(u) O A(Au) g (6xr)
18, .8 a r a 19a ar

-0 a (AuT ) A(Aua) g (dxr) + ... (22)oar sr

where the dots represent fourth- and higher-ordcr quantities regardless of

(6x r). Equation (22) is equivalent to the precise relation (7). If the terms

symbolized by dots are omitted, the equivalence Is valid to the third order. In

this case, the desired set A(Au a ) is obtained by solving the linear system

[(a ) _ (ax ) s - (6x ) 0a (iuT)] A( ua) = (A') (6x) , (23a)

Oa s Oa s pa

where

(a ) = (A8 ) g (Ar) (6xs ) = g (,xr) (23b,c)
Oasr a s s

a
All the quantities in parentheses are formed witi %Au ). The relation

(23a) could be called "modified normal equations", and the matrix form of the

quantity inside the brackets could be called "matrix of modified normal

equations". The second- and the third-order partial derivatives grouped

respectively In 0s and s are evaluated at P and can thus be stored anda Oar
treated as constant should (23a) be re-applied. Their "once and for all"

evaluation is useful since in complex models their re-computation at an updated

point would represent a serious drawback. We remark that If (x r ) Is small, in

the sense it contains first-order quantities, the third term inside the brackets

of (23a) can be left out since It would give rise to fourth-order quantities.

3.2 Initial Iteration with Large Residuals

The development in the previous section was based on the set (Aua) as

obtained in the initial iteration of the standard adjustment approach. In

[Blaha, 19871, such a common Iteration was called "zero-th Iteration". This

concept is abandoned since the two approaches can now be considered distinct

already at the initial stage. In particular, we develop a general case of the

geometrical approach, where already the first, or initial, iteration is based on

the exact relation (7) valid at the least-squares point P.
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In consulting the previous section, we present the barred tensors in (7):
-s s +asA T  12

AQ A sAu + (1/2) Au7 Au + ... (24a)

-r ~r Ar r a 8ax x _ A Aua - (1/2) O r Aua Au - (24b)0 as ..

To avoid expressions nonlinear in Aua, we introduce approximations in (7)

whereby all terms containing the second and higher powers in Aua will be left

out, i.e., o(Aua Aup), o(Aua Aup Au ), etc., will be neglected. This means that

the third and further terms on the right-hand sides of (24a,b) will be

neglected, as well as the term -0; Aurg ArAu4 participating in (7).
osr ar 0

Equation (7) is thus written as

Aa g axr _ As g Ar Aua + Q T AuT gsrx r +  = 0 (25)
i sr A sr a r gsr

where the dots represent the terms which would contain the second and higher

powers of Au , and where no assumptions have been made yet about the size of the
r rknown contravariant vector 6x . We add that the values constituting Ar ,

Or , a

a and g are assumed finite and of mutually comparable magnitudes.ais' s

Upon the use of the symbols a Pa and 6xs , where

s r ra= A gsr A a dx s gsr (26ab)

equation (25) becomes

[a -6x 0a + ""]Aua =A s x (27)
isa s Pa i s

The first geometrical iteration is characterized by the neglect of the second

and higher powers of Aua in (27), in which case the solution of Au is denoted

temporarily as (Aua ):

[a -6Xs 0 (Aua } = As 6x (27')
Osa s Pa is s

In terms of Fig. 1, this solution would lead to a model-plane point lying

somewhere between P and P2' and to a model-surface point lying somewhere
s abetween (P) and P. If we further neglect -x s0 aAu and denote the

corresponding solution by (Aua), equation (27) becomes

a (Au" ) = A s 6x (27")

which symbolizes the normal equations In the standard adjustment approach.
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a

In the standard approach, the initial values of parameters, u , are
0

a
assumed to be close to the final values, u In our current notation and

terminology, this assumption, which we shall retain, Is equivalent to stating

that Aua contains first-order quantities. Since only the second- and higher-

order quantities are Ignored in (27'), (Au in the first geometrical iteration

will recover the main contribution of Aua . The errors in (Aua ) will thus have

the magnitude of second-order quantities, consistent with the property

previously attributed to the initial standard iteration.

As the comparison of (27") with (27') reveals, this property of the initial

standard iteration is indeed valid, provided the term -6x fl Au a neglected in
s Oa

the standard approach is at the level of second-order quantities, i.e., at the

level of the terms already neglected by (27'). In general, this is true if bxr

contains first-order quantities, which Is another assumption inherent in the

standard approach. Accordingly, under the two standard assumptions, requiring

that both Au a and 6xr contain first-order quantities, the solution of (27") Is

valid to the first order, similar in this respect to the solution of (27'). The

errors in both (Au ) and (Au a ) are then second-order quantities.

If the second assumption above is not satisfied and 6xr contains finite

quantities, (27') will still hold true to the first order whereas (27") will

not. Although the quantities in (Au , will be of the first order, their errors

will in general attain the first order as well, due to the neglect of the first-

order quantities -&x sOaAu . This case is mainly of theoretical interest,

since, In practice, It corresponds to excessive observational errors which

should be eliminated beforehand. However, we might also consider the instances

where 6xr belongs to a category "in-between" and contains quantities that are

finite but small, without being small enough to warrant the attribute "first

order". Here the solution of (27') is better than the solution of (27"), but

not by an order of magnitude. We conclude that in general the solution of (27')

approximates Au a as well as, or better than, the solution of (27"). Better

results are obtained when the values in xr have the magnitude greater than that

characterizing the first order.

The quantities forming 6x r and their link to (27') and (27") can be further

elaborated on as follows. Since Au is of the first order by assumption, and

since the same applies to (Aua ) and (Au ), equations (27') and (27") reveal that
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the tensor A sx s which figures on their right-hand sides, Is also of the
0 5'first order. In fact, (27") allows this tensor to be written as

s axr _ (Au )A0 gar

The above expression identifies the projection of the vector 6x onto the model

plane, as previously depicted in Fig. 1. Since (AuP) is of the first order, it

follows that if the magnitude of the vector 6x is significantly greater than

that characterizing the first order, this vector must be fairly nearly

orthogonal to the model surface. This, in turn, imposes restrictions on the

observational errors.

In summary, if 6xr is of the first order, which corresponds to the presence

of small observational errors as encountered in practice, the first geometrical

iteration (27') has the same level of accuracy as the first standard iteration

(27"). This category includes 6xr=0 , which, in turn, includes the case of

error-free observations. If the characteristics of 3xr fall into the "in-

between" category, which corresponds to the presence of large observational

errors, (27') has a higher level of accuracy than (27"), although not by an

order of magnitude. Here the errors are restricted in the sense that 6x must be

fairly nearly orthogonal to the model surface. Finally, if 6x r contains finite

values, which corresponds to the presence of excessively large observational

errors (blunders) and Is thus mainly of theoretical interest, (27') is still

valid to the first order, whereas (27") may give completely false results. En

this case, the errors are restricted in the sense that 3x must be very nearly

orthogonal to the model surface. Since (27') gives results that are as good as

those of (27") in most cases, and better in the remaining cases, the use of this

equation as the first geometrical iteration is fully justified.

3.3 Minimum-Distance Property

For the sake of theory, we express 5a2 (the square of the distance

between P and Q) by means of the Taylor series based on 6s2 (the square of the

distance between P and Q). The latter is a known constant, namely

2 s r
6s =ax g sr 6x
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while the former is a function of Au , expressed as

-2 -s -r
69 . 6x gsr ax

-r rwhere 6x is given e.g. in (24b). In using the symmetry of gsr and r  in

the lower indices, we deduce that

-2 6 2 + qa A u a + (1/2) Hap Auc Aup +

where

qa a8s 2 /aua =- 2 A s g x
a a gsr '

-2 a 
s  r

H a 6,2 /au au = 2 (As g r A &X g J ).....
a$ sr a sr a$

The second-order partial derivatives grouped in H are assumed continuous, at

least in the neighborhood of the point P.

A similar expression can be written for a model-surface point in the

.2neighborhood of P, whose square of the distance from Q, denoted 3s , can be

expressed in terms of 652

2 -2 - ~,a - .a
6§ = 6s + q AU+(1/2) H 0 tMi

Here ,a is the difference, in model-surface coordinates, between the point In

question and the point P. The necessary and sufficient conditions for 65

to have a local minimum at P are

a -s g r a r  0 (28)

and

(Ha0] = positive-definite matrix (29)

the brackets indicate the matrix equivalent of f a' where

2 'A a Ar _ 6xs g r
Ha '2 gsr a sr a

The latter equation can be written as

(1/2) H a = a a 6x 9 0 , (30)

with

- -s -r - -r
aa A gsr A a x s g srx (31ab)
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We first notice that (28) Is satisfied by virtue of (7). Further, since
-s = s cs (2
oa . a + 16a AuT + ... (32)
9a $a gar

equation (30) becomes

(1/2)1 H a - dx a 6x * s Au7 - ... (33)

cgp Pa Pas 9 ar

According to (29), the above quantity, symmetric In the indices a and P, should

represent a positive-definite matrix. If we now compare the right-hand side of

(33) with the quantity inside the brackets of (23a) In Its final update, i.e.,

in the idst iteration where (aPa), (x s). and (AuT) become essentially aPa'

6x , and AuT, we observe that within the required accuracy the two forms are

identical, It is thus confirmed that the algorithm represented by (23a) leads

to a minimum provided the updated matrix of modified normal equations is

positive-definite, and vice-versa. Since the existence of a minimum is assumed

throughout, and since P is assumed to be sufficiently close to P, the above

outcome implies that the matrix of modified normal equations will be positive-

definite In all iterations, with or without the contribution of the third-order

partial derivatives. This, In turn, Implies that it can be inverted by the

Choleski algorithm, as is illustrated In the example presented in Appendix A.
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4. DISCUSSION

4.1 Basic Considerations

The leading subject of this discussion is equation (23a), applied after the

initial iteration. We begin by relating (x r ) to 6x r , where, in the

adjustment context, the latter represents the negative residuals. From (20a) we

write

(6xr ) _ 6x = A( xr )

which, upon using (19c), becomes

(6x r )  = -r  _ ( r) A(Au a ) . .(
r - (Ar a~ ~u + ... (34)

Here the dots again represent fourth- and higher-order quantities. 
Thus, (Oxr)

-rdiffers from 6x by second- and higher-order quantities.

We distinguish three basic cases with regard to the magnitude of the

quantities ccmprising the set 6xr:

1) If 6xr is of the second order or smaller, (Jxr) Is in general of the

second order and the two sets (of very small values) may be quite different.

This case includes x r=0, where the point Q lies on the model surface as would

happen, for example, with error-free observations.

2) If 6r is of the first order, so is (6x ), and the two sets are similar

In values.

3) If 6xr is large (finite), so is (Oxr), and the two sets are nearly equal

in values.

In the first case, (6x s) is of the second ordei and (23a) simplifies to

(a ) A(Aua (A') (Ox_) (35)

This, however, is precisely the formula for standard adjustment, corresponding

to normal equations formed after the initial iteration. In particular, the

left-hand side Is A(Au ), and the equation corresponds to the system (8)

considered at the point (P). We conclude that in this theoretical case, which

includes the category of error-free observations, the standard solution is valid

to thp third order and hence conforms to the strategy pursued in this study.
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The second case, which satisfies the standard assumption that both the

parametric corrections and the residuals are small (first-order), Is certainly

the most significant in practice. As was indicated at the close of Section 3.1,

equation (23a) becomes

[(a ) - (6xs) Qs] A(Aua) = (A') (-x) (36)

In comparing It with the standard equation of the form (35), we notice that the

latter entails the error (6x s)O O(Au ), which Is of the third order. The

standard formula in such practical cases is thus valid only to the second order.

The newly developed equation (36) Is superior to the standard normal equations

by one order of magnitude, which leads to a commensurate increase In the rate of

convergence. In fact, depending on the smallness of 6ua , and thereby on the

proximity of the initial point P to the least-squares point P, the solution of

(36) may be final.

Next. we examine the improvement in the solution if equation (36) is re-

applied. We further assume that the original solution A(Auo) Is valid to the

third order, the same as the accuracy of the formula (36) Itself. The new,

updated set (Aua) is thus valid to the third order (instead of the first order

as assumed Initially), and the new A(Aua) contains fourth-order quantities. At

this stage (36) reveals that fifth-order quantities are retained, while sixth-

and higher-order quantities are ignored. The new solution will thus be valid to

the fifth order. By contrast, the second iteration in the standard approach

(i.e., the original application of equation 35) would yield the solution valid

to the second order, the next iteration would yield the solution valid to the

third order, and so on. To summarize, the order of errors in the repeated

applications of (36) would be 4, 6, 8 ..... while this order in the standard

iterative process symbolized by (35) would be 3, 4, 5.....

From the theoretical standpoint, the most revealing Is the third case. As

we have seen, the original formulation (23a) is valid to within the third order.

However, It &xr contains finite quantities, the standard form of normal

equations (35) is virtually useless; It is valid only to the frrst order, since

the first neglected term in (23a), namely -(6x )0 s (Auo). is of the second
order, the same as the entire left-hand side of (35). Thus, not only does (35)

entail errors two orders of magnitude greater than errors in (23a), but. In

general, It does not converge. (If 3xr should belong to an "in-between"
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category discussed In Section 3.2, these statements would be commensurably

softened.) Such facts are at the root of the standard assumption that not only

6u4 and thereby (Aua), but also 6xr and thereby (6xr ) should be small. We

conclude by stating that the standard approach cannot accommodate the third

case, while the new formula (23a) accommodates it to the third order, and the

simplified formula (36) accommodates it to the second order.

As a matter of interest, we examine the possibility of A(Aua) being larger

than second-order. Out of necessity, we assume that A(Aua) contains quantities

whose magnitude is somewhere between the first and the second orders, In the

sense that o[A(Aua) A(Auo)] is of the third order (instead of the fourth order

as stipulated earlier). Clearly, the neglected quantities o[A(6ua) A(Aup)]

cannot be of the second order since this would make even the full equation (23a)

valid only to the first order. The dots in equations (17b) and (19b) now

represent third- (instead of fourth-) and higher-order quantities. The same can

be said about the terms a, b, and c, and thereby about (22) and about errors in

(23a). Due to the modification of the assumption regarding A(Au a), the accuracy

of the three formulas under consideration (equations 35, 36, and 23a) is

somewhat compromised in the first and the second cases, but the effect is not

qualitatively profound. However, In the third case the standard formula (35) Is

virtually useless. The simplified formulk (36), although compromised to a

certain extent, leads to useful results, while the full formula (23a) Is as

effective as the standard formula (35) would be under the standard assumptions.

(Here again, if 5xr should belong to an "in-between" category, all three

formulas would give commensurably better results.)

We note that (23a) could be reformulated with the partial derivatives

evaluated at (P). Since at (P) we have

(Q 0a) Pa+ (u') + (37a)#a =a...

in keeping with the stipulated error level we can write (23a) as

(a ) (6x ) (M )] (Aua (A) (&xs) (37b)

However, the original equation (23a) is preferable to (37b) since it displays
9 athe fact that the sets 0 and D,, can be stored and treated as constant,

and !mplicitly suggests in which manner and under what conditions it can be

9implified. We have seen such simplifications In (35) and (36). Although the
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full formula (23a) is appealing from the theoretical standpoint, computer run-

time and storage considerations favor the simplified formula (36).

a. a aAfter obtaining the final parametric values u =u +Au . one can computeo

the desired quantities, such as Axr and thereby 6 xr, as well as the tensor

-r nee
A needed to form

a -A 3 Xr (38)

aPa sr a

which, in turn, can be used in the variance-covariance propagation and In the

weight propagation. In paralleling the discussion of Section 3.1 pertaining to

a linear model, we state that the tensor a , obtained from a$a via the

tensor equation a a W5 corresponds to the variance-covariance matrixtensr eqatin a ia r r'

of adjusted parameters, while the tensor a itself corresponds to the weight
P3a

matrix of these parameters. Further, the variance-covariance and the weight

matrices of adjusted observations correspond respectively to

a A , gsr si gjr (39a,b)

As has been mentioned at the close of Chapter 2, the above tensors describe

"tangential", or first-order, properties of least squares estimates. In

reference to [Blaha, 1984], the variance-covariance and the weight matrices of

residuals correspond respectively to the tensors

-,,rs rs -,rs -, -'
g =g - ' sr = gsr - gsr (40a,b)

4.2 Additional Notes

We begin this discussion by demonstrating that an eventual re-application

of (23a) is straightforward and without any pitfalls. We observe that such a

re-application would be equivalent to using (23a) in conjunction with a new

point (P) situated closer to P than the original point (P) obtained via the

initial Iteration. The quantity (Au ) would then represent the model-surface

coordinate differences between the new point (P) and the Initial point P; (6xr

would similarly refer to the new point (P). This situation would change nothing

in the development nor in the results represented by equation (23a) itself. In

particular, the utilization of (du ) from (8), which in Fig. I gave rise to the

model-plane point PI and thereby to the model-surface point (P), was essentially
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a matter of convenience. If such a model-plane point were found closer to P2

(produced e.g. by the initial iteration of Section 3.2). It would represent a

welcome shortcut, but none of the pertinent relationships from (12a) on would

change. And if it could be found at the exact location of P2. the right-hand

side of (23a) would be zero by virtue of (7), which would yield A(Au )=O. The

same considerations are valid also with regard to the simplified formula (36).

As we have seen, the latter differs from the full formula (23a) by the error

level due to the truncated terms, but only in the case of large residuals.

We now focus our attention on the second case (with small residuals)

represented by (36), and examine whether advantage can be taken of the set 0 r' 0 a

In forming (Ar) and (x r), as opposed to computing these 
tensors from the

ar
nonlinear model. If we Include only the term containing lrC in (16) and

r eo
neglect the subsequent terms, the error in (Aa ) will be of the second order,

as will be the error In (a a) formed through (23b). Accordingly, the error on

the left-hand side of (36) will be of the fourth order and negligible.

Similarly, If we include only the term containing 0 r In (18) and neglect the

subsequent terms, the error in (Ax ) and thereby also in (&xr ) given by (20b)

will be of the third order, resulting only in a fifth-order error on the left-

hand side of (36).

However, the right-hand side of (36) offers a different picture. In

forming (A )(6xs), where (A ) contains second-order errors and the first-

order quantity (6xs ) contains third-order errors, we observe that either kind of

errors introduces third-order errors Into the product. Thus, to keep with the

fourth-order error level implied by (36), both (A ) from (16) and (Axr) from
a

(18) would have to include the terms with Or We note that the order of
aPT"

magnitude of the remaining truncation errors In these two quantities is

independent of the closeness of (Au ) to Aua , which would preclude a re-

application of (36).

In the case of a single application of (36), only (16) would entail

significant computing effort since (18) could take advantage of the intermediate

results r(6u) and 0 (Aup)(AuT). If one chose to pursue this avenue, it
a u rO wouT

would then be quite easy to adopt the full formula (23a) where auT ) would

be known from an early Intermediate result. However, passing from (36) to (23a)

would nnt decrease the overall error level (fourth-order). In realizing that

0 r is not needed in (36), we might wish to avoid computing and storing these

a$ r
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third-order partial derivatives altogether. Accordingly, (A ) as well as
a

(Axr ) and thereby (x r)=axr-(Axr )X_(X r), where (x r)-xr((ua )), would be

computed from the nonlinear model as in the standard adjustment approach. This

choice is further supported by a potential need to re-apply the algorithm (36).

It is instructive to compare the development presented in this study with

that of [Blaha, 1987]. Although both cases rely on the precise relation (7).

the latter resulted in a less efficient algorithm due to the simplification

which we shall now describe. The tensor A was utilized in the form

A +AA as in (13a). On the other hand, the vector 6x was substituted for

by the right-hand side of (14), but only for the contraction with A gsr, not
sA

for the contraction with Ag sr. Accordingly, the relation (7) became

A5 g 8xr _As g Axr + s 8 xr =0.
A sr - sr 0 sr

The first term above was (Au ) by virtue of (8), and the second term was

-a AuTAgsr v , as is confirmed through (12a,b). The resulting equation was

contracted with a , yielding

a= a a s r ap s -r

Au= (Au ) - a A gsr v + a A gsr 6

which, except for minor notational differences, was presented in [Blaha, 1987]

as equation (28).

The solution in this reference proceeded as if Au a were split into

(Aua)+A(Aua) seen in (15), but only for the left-hand side above, not for the

r -r r
formation of v by (12c), nor for the formation of 6x by (14) with Ax given

by (12a-c). The values 6ua implied in vr and Axr were approximated by (Aua),

i.e., the terms beyond the first on the right-hand side of the above equation

were treated as if A(Au ) were zero. This introduced errors in an initially

exact equation, which were an order of magnitude greater than the terms

neglected in the present study. For example, in the situation called here the

second case the thus Introduced errors would be of the third order instead of

the current fourth order. Such simplifications downgraded the convergence

characteristics of [Blaha, 1987] essentially to the level of the standard

approach.

The results as well as intermediate formulas in this study could be

preze..tpd In the familiar matrix notation. In the case of simply- and doubly-

indexed qudntities, matrix transcriptions would present no difficulty since
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tensor contractions and matrix multiplications amount to the same operations,

provided the matrices are arranged in the proper sequence and form (direct or

transposed). With regard to three- and higher-dimensional arrays, matrix

manipulations could be extended upon imagining that ordinary matrices are

stacked one behind the other, that groups of matrices are stacked one behind the

other, etc. However, we prefer working with the original indexed quantities,

which allows more flexibility in derivations as well as computations, and which,

in any case, is at the root of the matrix operations themselves (restricted to

one or two indices). For the sake of interest, Appenlix D translates the main

outcome of this study into matrix notation.
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5. SUMSARY AND CONCLUSIONS

A convenient approach for resolving nonlinear least-squares problems

consists in using an isomorphic geometrical setup with tensor structure and

notation. Such a link is highlighted by the consideration that if, in the n-

dimensional observational space, the metric tensor g sr corresponds to the weight

matrix P, and if the contravarlant components 6xr of a displacement symbolized

by dx correspond to a set of estimated observational errors, i.e., to a set

of negative residuals -V, then the least-squares criterion

VT P V = minimum

corresponds to the quadratic form

6x g sr 6 xr 62 = minimum

where &s is the magnitude of the displacement. Should 6x identify an

unknown displacement from the u-dimensional model surface to the point Q given

in the surrounding observational space through the actual observations, the

minimum-distance property restricts 6x to the segment PQ of a straight line

dropped orthogonally from Q onto the model surface, where P marks the

intersection. This situation Is Illustrated schematically in Fig. 1. Since

orthogonal relations are readily exploited In a geometrical environment, the

least-squares method -- unlike any other method -- is particularly suited for

geometrical analogy and analysis.

Among the basic correspondences between adjustments and geometry, the

number of observations, n, and the number of parameters, u, correspond

respectively to the dimensionality of the observational space and of the modPI

surface. The variance-covariance matrix of observations, £, corresponds to the
rs

associated metric tensor g , while the weight matrix of observations, adopted

as P 1, corresponds to the metric tensor g.sr Since £ and thus also P are

constant, the observational space is endowed with a coordinate system {xr such

that

gsr constant g = constant

The set Lb of actual observations corresponds to the set x of observational-
Q aspace coordinates describing the point Q. All possible sets L of adjusted
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observations (subject to no criterion) correspond to the Gauss form of the model

surface endowed with a coordinate system (ua}:

x r x ( ) , r = 1,2,...n , a = 1,2,...,u

The final set of adjusted parameters. Xa, corresponds to a particular set

u of model-surface coordinates describing the least-squares point P. The set

of initial parameters, X . corresponds to the set ua of model-surface

coordinates describing the initial point P. The final set of parametric

corrections, X, then corresponds to Au a u -ua; these quantities are assumed0

to be small (termed first-order). The final set of adjusted observations, La,

corresponds to a particular set x r=x r(u a ) of observational-space coordinates

describing the least-squares point P. Similarly, the set F(X ) corresponds toth st r r. a o

the set xr=x (u") of observational-space coordinates describing the initial

point P. The set of negative constant terms, -L=L -F(X ), corresponds to the
. r_ r

contravariant vector d xrQ - o , while the set of negative residuals,

-V=L -p(Xa), corresponds to the contravariant vector x r=x r-x r. The
Q

initial design matrix A, which in standard observation equations V=AX*L relates

the parametric corrections to the residuals, corresponds to the design tensor

Ar= ax r/au2 evaluated at P. On the other hand, the standard adjustment
a
approach does not have equivalents of r and D hich form three- and

four-dimensional arrays, respectively, and contain the second- and the third-
r wit

order partial derivatives of x with respect to u , evaluated at P.

The geometrical approach is based on a direct exploitation of the relation

A -6r _ o (41)

0 gsr

where A represents the design tensor evaluated at the least-squares point

P, and equation (41) itself represents the orthogonality condition at P.

The outcome of the geometrical development is considered in two methods, called

geometrical and extended geometrical. It is contrasted to the standard method

treating nonlinear models In a linearized form. The algorithms associated with

all three methods are presented below in the form of the first iteration, and In

t.e form of the second and subsequent iterations.

All the formulas are written in tensor notation. In the case of simply-

and doubly-indexed quantities, matrix transcriptions would present no difficulty

since tensor contractions and matrix multiplications amount to the same
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operations, provided the matrices are arranged in the proper sequence and form

(direct or transposed). With regard to three- and higher-dimensional arrays,

matrix manipulations could be extended upon imagining that ordinary matrices are

stacked one behind the other, that groups of matrices are stacked one behind the

other, etc. However, working with the original indexed quantities allows more

flexibility in derivations as well as in computations.

In tensor notation, the initial matrix of normal equations corresponds to

the model-surface metric tensor aPa at the initial point P, and the initial

right-hand side of normal equations corresponds to the model-surface covariant

vector A Sx at P, where

s r r
aPa =A gsr a s g sr x

The parametric corrections stemming from the first iteration are symbolized by

(Aua), and they give rise to an updated point (P). The latter is described by

the model-surface coordinates (ua )=ua +(Aua). The quantities belonging to (P)
0

will likewise be written in parentheses. The parametric corrections obtained in

the second iteration will be denoted A(Au a), and they will give rise to a new

updated point determined via (ua )+A(Au a). The notation used in conjunction with

the second iteration will be retained also for any further iterations.

Standard method. Under the assumption that both sets Au a and 6x r contain

small quantities (first-order), the first iteration in the standard method reads

a~a (Aua) = A' 6x (42a)

representing the initial normal equations. The second and further iterations

follow the same principle:

(a ) A(Aua ) = (A') (,x) (42b)

As is illustrated by the example in Appendix A, the convergence properties of

this method may be significantly impaired by an increased size of observational

errors.

a
Geometrical method. Under the same assumption as above (both sets Au and

6xr contain small quantities), the first iteration utilizes the same formula as

Its standard counterpart, namely

a (Aua ) = A &x (43a)
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However, the second and further iterations proceed according to

[(a a) - (ax ) 091 (ua) (A') (6x) (43b)

representing the modified normal equations. The triply-indexed quantity s

formed by second-order partial derivatives of the observables with respect to

the parameters, is evaluated only at the initial point P. The formulas (43a,b)

are relatively simple yet efficient, and are suitable for practical applications

where the convergence of the standard method is problematic.

Extended geometrical method. Although the assumption regarding Aua is

unchanged, this method is tailored for 6x r containing relatively large

quantities, for which the first Iteration reads

[aa -6x fa ] (Au") =As5x (44a)

Compared to the geometrical method, the current algorithm is seen to utilize

second-order partial derivatives and to give rise to the modified normal

equations already in its first iteration. The formula for the second and

furiher Iteratiusis is given as

[(a) - (xs) aa- (6x ) 0s9 (AuT) A(Au) = (A) (6x) , (44b)

representing the modified normal equations at updated stages. Here use Is made

of (s containing third-order partial derivatives. This quantity is

evaluated only at P, similar in this respect to We note that the

quantity inside the brackets of (44b) could be replaced by (a )-(Ox )(0,
ss Pa

where (0a ) would represent the second-order partial derivatives evaluated at

an updated point.

a. a Aa
After obtaining the final set of parametric values u -uo0 Au . one can

-r r, r

compute the desired quantities Ar, , and 6xr either from the nonlinear

model or by using the Taylor series expansion. The tensor A is needed toa

form

- is g -r
a Pa 0 ra

which corresponds to the weight matrix of adjusted parameters. 
The tensor a-ap

obtained from aOa through the relation a a Or= _ then corresponds to the

variance-covariance matrix of adjusted parameters. Further we have

- rs .r a -s -' -,IJ
a A , gj
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which correspond respectively to the variance-covariance aad Ehe weight matrices

of adjusted observations. The above tensors are expressible by means of

orthonormal vectors tangent to the model surface at P. Accordingly, they

describe "tangential", or first order, properties of least-squares estimates.

Finally, the tensors

- rs ,9rs _-,rs g,-,gg

correspond respectively to the variance-covariance and the weight matrices of

residuals.

A significant contribution to the understanding of the least-squares

adjustment theory through differential geometry has been made by Teunissen

[1985]. The geometry of a nonlinear adjustment is treated in his Chapter IV,

the main topic of which Is Gauss' iteration method. This method characterizes

the standard adjustment approach as is confirmed, for example, by the text on

page 109 stating that "at each iteration step the observation point is

orthogonally projected onto a new tangent space". Such an algorithm is

equivalent to the solution of the type (42a,b) above, which, in terms of Fig. 1,

would result in the projection of the point Q onto the model plane passing

through the Initial point P, followed by the projection of Q onto a new model

plane passing through an updated point (P), etc.

In the same vein, page 109 (ibid.) states that Gauss' iteration method

"consists of successively solving a linear least-distance adjustment until the

necessary condition of orthogonality is fulfilled". This condition, equivalent

to our equation (41), is fulfilled in the standard method as a by-product of the

projections discussed above. By contrast, the geometrical approach actively

seeks to fulfill it at every step. A one-step solution producing the least-

squares point P directly Is hindered only by the necessity to truncate certain

terms, but not to the extent of making the entire model linear (see the above

equations 43b and 44a,b). The matrix of modified normal equations generated In

the process Is positive-definite, similar in this respect to the matrix of

normal equations in the standard method.

Although the behavior of the standard adjustment algorithm has been

analyzed and described in detail by Teunissen (1985], the behavior of the

geometrical algorithm developed herein allows ample opportunity for further

analysis. A study comparing the geometrical approach with alternative methods
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would be worthwhile for the sake of theory as well as for practical reasons

(computational burden, rate of convergence, etc.). Another worthwhile effort

would be to study the effect of the model's nonlinearity on the statistical

properties of least-squares estimators, is is outlined in Section 6 of Chapter

Iv, Ibid. The need for further research is also underscored by the fact that

the above discussion has touched merely on one class of adjustment problems, the

parametric adjustment. Nonlinear versions of the general method (with or

without constraints), rank-deficient systems, etc., all await a systematic

geometrical treatment.

Indeed, as the Epilogue to his Chapter IV, Teunissen [19851 indicates that

scientists are only on the brink of understanding the complexity of nonlinear

adjustment. He fiirther states: "Unfortunately, one can seldom extend the

elegant formulation and solution techniques from linear to non-linear

situations. For most non-linear problems one will therefore have to recourse,

In practice, to methods which are iterative in nature". In this light, the

present study constitutes a contribution in accelerating, although not

completely eliminating, the iterative process.

Encouraging results have been obtained in the numerical example presented

in Appendix A, illustrating convergence properties of a third-order polynomial

In four variables. Although the standard method converged slowly in one of four

analyzed cases and diverged in two others, the geometrical method converged in

two and three Iterations, respectively. The extended geometrical method further

reduced the number of iterations from three Lo two. u expected that in most

nonlinear cases the presence of second-order partial derivatives will translate

into two iterations in the geometrical method as compared to several iterations

needed by the standard method.

In spite of the accelerated convergence of the geometrical approach, the

fact remains that the methods discussed herein, as well as other methods used in

physical sciences for adjusting nonlinear models, are Iterative in nature.

However, one can conceive of a geometrical scheme where the determination of the

least-squares point P can be made arbitrarily accurate in one single step upon

increasing the number of meaningful terms in the Taylor series expansions. Such

an approach would have to be fundamentally different from the one described in

this study, where an Increase in the number of meaningful terms has certain

limitations. In particular, if the observational errors are relatively small,
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the current geometrical approach cannot take advantage of the third- and higher-

order partial derivatives of the observables with respect to the parameters,

whose contribution would be invalidated by the truncation errors of comparable

magnitudes. Thus, developing a theoretically distinct geometrical setup along

these lines Is yet another challenge In the field of the nonlinear least-squares

adjustment.
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APPENDIX A

NUMERICAL EXAMPLE

The nonlinear parametric adjustment model Is represented by six

observables, each expressed by a third-order polynomial in four variables.

Thus, the number of observations is six, n-6, and the number of parameters is

four, u=4. A simpler adjustment problem featuring a second-order polynomial was

presented by Bessette [1987], who utilized the algorithm described in [Blaha,

1987]. Although that algorithm lowered the number of scalar multiplications in

each iteration as compared to the standard method, It did not accelerate the

rate of convergence (see Section 4.2). It has been superseded by the algorithm

developed here, which has been programmed and verified independently on two

different computers.

in terms of the four parameters u , a=1,2,3,4, a general observable denoted

x is expressed by

a a ax =C au + k aU U + M arUa U,

where a ranges from I to 4, 0 ranges from a to 4, and r ranges from $ to 4. The

numerical values of the four c-coefficients (linear), the ten k-coefficients

(quadratic), and the twenty m-coefficients (cubic) for all six observables are:

+0.8, +1.2, +0.8, +1.5; +2.3, -1.6, +1.7, +2.0, +1.8, -2.1, +2.1, +1.5,

-2.4, +2.1; -1.1, +0.8, -0.9, -2.1, +1.0, -2.0, +1.5, +2.0, -0.9, -1.2, +0.8,

-1.9, -1.3, +0.9, +1.2, +0.8, -2.1, -1.6, +1.8, +1.1.

1.7, +2.1, -2.1, +1.6; +1.3, *2.2, +1.0, -2.2, +1.7, +1.7, +2.1, +1.8,

-0.7. -1.6; +1.3, -0.8, -0.9, -2.1, +2.0. +1.2, -1.8, +0.9, -1.3, +1.3, -2.1,

-0.9, 1.5, *0.8, +1.1, +1.7, -2.1, -1.8, +1.2, -1.0.

+1.3, -2.1, +1.7, +2.1; +2.2, +2.3, -2.2, +1.1, +1.2, +2.0, -1.7, +1.5,

+1.9, -I.7; -1.1, -2.0, +1.7, +0.8, +1.0, -2.1, +2.2, +1.2, -1.9, +1.7, -1.4,

-0.8, +0.8, +1.0, -1.1, -0.9. +1.8, -1.4, -0.9, +2.1.

+1.6, +1.0, -2.1, +1.1; -1.7, +2.2, +1.6, -1.6, +1.6, -1.2, +2.1, +2.3,

-2.1, +1.2; -2.2, -0.8, +1.0, -1.2, +0.9, +1.3, -0.8, +2.1, +1.9, +1.2, +0.9,

-1.5. -1.6, -0.8, -1.0, +0.9, -0.9, +2.1, +0.8, -1.3.

35



+0.9, +2.1, -2.1. +1.8; +1.2, +1.7, +2.2, -1.5, +1.9, +1.3, -2.2, +1.7,

+1.0, +2.3; +1.1, -1.2, -0.9, +1.3, +1.5, +1.0, -0.8, -2.2, +0.8. +1.7, -1.2,

-0.3. +1.1. -2.0, +1.7, -0.9, +0.8. +1.3, -1.8. -1.1.

+1.7, +1.2, +1.7. -1.6; +2.1, +1.6, -1.1. +1.9, +1.6, +1.7, +2.0, +1.2,

+1.6, -1.7; +1.3, +2.1, -1.0, -0.8, +1.2, -2.1. +2.2. -1.6, -1.8. -0.8, +1.9.

+1.2. -0.9, +1.2. +2.0, -1.7, +1.1, +1.0, +0.8, -2.2.

The positive-definite variance-covariance matrix of observations
rs

corresponds to the associated metric tensor g , chosen as

+1.3266 +0.5254 +0.3669 +0.1572 -0.2667 -0.0549

+1.3457 -0.0281 +0.5924 -0.1448 +0.5521
gr +1.4143 +0.5144 +0.3600 -0.5204

+1.4629 -0.5604 +0.4877

+1.3930 -0.1034

+1.3500

where the dots denote the symmetric elements. The positive-definite weight

matrix of observations corresponds to the metric tensor gsr computed from

gks k . The initial set of parameters is represented byg sr T r

a
U . +1.399, -1.201. +1.299. +1.099

describing the initial point P by model-surface coordinates. The observational-

space coordinates xr of this point are determined from the model, as are the
0 r r r

sets of partial derivatives Aa , ar0l and 0raft (the last set is constant
a~r r

here, and any further set is zero). Finally, the elements of x representing

error-free observations are

r
x , +4.80, -4.79, +33.44, +0.33, +22.47, -11.69

These values correspond to the following set of final parameters:

au , +1.4, -1.2, +1.3, +1.1

The example has been generated in four versions which differ from one

another by the size of the final residuals. Each version is treated by three

methods summarized in the conclusion: standard, geometrical, and extended

geometrical. A basic version has been generated with excessively large final
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- rr

residuals grouped in the tensor _-dr

6x . +3.22, +22.55, -10.59, -1.28. +24.27. +14.68

-r
This version gives rise to a total of four, upon scaling the values In 6x by

a factor c, where

c = 0.001; 0.01; 0.1; 1.

The residuals in the first version (c=6.001) can be considered first-order, or

essentially differential, as required by the standard methodology. On the other

side of the spectrum, the residuals in the fourth version (c=l) are so large

that this case Is presented mainly for the sake of theoretical interest.

The iterative process is terminated In each method and each version when
a -8

errors in all of the parameters u , a=1,2,3,4, are less or equal to 5x1O
a 2

Such errors remaining in u are listed below only for u , for which they are In4

general the worst. In the standard method, the errors In u are very similar to

those in u2 (including the sign), but their magnitude is slightly larger. A

statement of this kind applies also to the geometrical method for small values

of c (represented by c=0.001 and c=0.01). The reverse Is generally true for

large values of c (represented by c=O.1 and c=l) in the geometrical method, and

for all four c's in the extended geometrical method.

Results for u2 in the standard method, in the geometrical method, and In

the extended geometrical method are:

-6 -8

c 0.001 ..... stand.: -4x10 , +3x10

-6 -12

geom.: -4x10 , +2x1O

-5 6 -7 -8
c 0.01 ..... stand.: -3x10, +2x1O-

, -3x1O +3xO -

-5 -3
geom.: -3x1O -

, +2x1O

-4 4 -4 -4
c = O.1. ..... stand.: -2xlO -

, +2xlO -
, -3x10 - +3x10 , diverges

-4 -7 10geom. : -2X10 +lxlO , -X1G

-5 -10
ext. geom.: -3x1O , -lxlO
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c = 1. ..... stand.: -2x10 - , +2xI0- 2  -2x10 - , +lxlO , diverges

-3 -5 -8
geom.: -2x10 -  -IxlO, +IxlO

-5 -10
ext. geom.: -lx10 -

, -2x10

The above results and further computer runs warrant the following comments:

1) Results substantially worse than those listed for u2 have been noticed

for c=0.001 In the case of the parameter u4 In the geometrical method (+lxlO -1 1

as opposed to +2x102 ). However, such exceptions do not detract from the

overall pattern seen above.

2) The passage from the geometrical method to the extended geometrical

method, i.e., the Inclusion of second-order partial derivatives in the first

iteration and of third-order partial derivatives In the second iteration, has no

appreciable effect on the adjustment with small residuals (c=0.001 and c=0.01).

On the other hand, in case of large residuals (c=0.1 and c=1) the effect is seen

to be great and the number of iterations is reduced from three to two.

3) If, In the extended geometrical method for c=O.1 and c=1, the first

iteration is adopted from the standard method (i.e., If the second-order partial

derivatives are excluded from that iteration), the total number of iterations

will grow from two to three. As an example In the case c=1, the errors in the

third iteration in such a mixed method have the same order of magnitude as the

errors in the second iteration of the extended geometrical method proper.

4) If, in the extended geometrical method for c-0.1 and c=1, the second

iteration uses only second-order partial derivatives (in keeping with the

pattern of the first Iteration), the errors will worsen by approximately two

orders of magnitude. However, this does not lead to an Increase In the number

of iterations (namely two) resulting from the current cut-off criterion.

5) In this example, where fourth- and higher-order partial derivatives are

zero, a procedure utilizing updated second-order partial derivatives in the

second iteration of the geometrical method agrees perfectly with the extended

geometrical method. This useful verification can be described as follows. In

general, the updated second-order partial derivatives can be expressed by

(a as + 0s (u T )  ...3

39



Since here the quantities represented by the dots are zero, the equality holds

true with only two terms on the right-hand side. But this Is precisely the form

featured by the extended geometrical method.

6) In the geometrical and the extended geometrical methods, as well as in

the mixed methods of the comments numbered 3 and 4, the solution of the modified

normal equations has been carried out using both the Gauss elimination algorithm

and the Choleski algorithm for positive-definite matrices. All the results,

including the inverted matrices of modified normal equations in all iterations,

have been found identical to all 11 digits printed. This illustrates that In

the usual case of continuous second-order partial derivatives and of the

solution converging to a minimum, the matrix of modified normal equations

evaluated in the neighborhood of the final point P Is positive-definite.

The above example illustrates that the standard method converges in general

only for small residuals (here for c=0.001 and c=O.O1). When larger residuals

are present, this method either converges very slowly or diverges (the latter

has been observed for c=O.l and c=l). The geometrical method is particularly

attractive. It is relatively simple, yet It converges In two iterations for

small residuals (c=0.001 and c=O.0l), and in three iterations for large

residuals (c-O.l and c=1). In the case of large residuals, the use of the

extended geometrical method further reduces the number of iterations to two.

This reduction has been accomplished here even without third-order partial

derivatives In the second iteration, which suggests that a fourth method could

be adopted (the mixed method of the comment 4), where only second-order partial

derivatives evaluated at P would be used, whether in the first or in subsequent

iterations. In conclusion, we have seen that the standard procedure may be slow

to converge, or may diverge if the residuals are large, whereas the use of

geometry leads to fast convergence, represented here by two or three iterations

depending on the level of simplifications.
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APPENDIX B

NODEL SURFACE AND NODEL PLANS

In this study, the underlying space encompassing all the geometrical

objects is an n-dimensional flat space called the "observational space". The

space coordinate system used exclusively Is symbolized by {x r), r-1,2, ...,n, in

which the metric tensor is

gsr s constant . (B.1)

In matrix notation, gsr would be represented by a positive-definite matrix of

dimensions (nxn). Embedded in the observational space is a u-dimensional

surface called the "model surface". The surface coordinate system is symbolized

by (ua), a=1,2,....u. The surface coordinates are considered in the role of u

Independent variables, without any specific physical meaning.

In the observational space, the model surface is defined by the Gauss form:

xr = xr(u0 ) , r = 1,2...,n , a = 1,2,...,u . (B.2)

Equation (B.2) restricts the values the coordinates xr can have in order to

describe points on the model surface. This form, expressing each of the n space

coordinates as some function of the u surface coordinates, Is considered known.

It is a higher-dimensional analogue of the Gauss form presented in Chapter 6 of

[Hotine, 1969]. describing a two-dimensional surface (u=2) embedded in a three-

dimensional space (n-3).

In the vicinity of an "initial" point P, whose model-surface coordinates
a

are u , (B.2) can be expanded in the Taylor series:

xr .r (U0) r + Ar (ua a) + (1/2) (r (a a uu
o a 0 a( 0 o

+ (1/6) or (ua a (uu uTu) (B.-=T u (u )(uu1  * ... , (8.3)

r r

where Ar, ar arT ... are coefficient sets evaluated at P. The set
r a a ae r
a is symmetric in a and P. the set 0 Is symmetric in a, P, and T. etc.

The differentiation of (8.3) yields

axr/aue Ar 6a + (1/2) fr [, u u )do] +
a a as 9 08Z

which, upon taking advantage of the symmetry, becomes
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axr/aua C Ar + 0 r (U- + (1/2) Or (up up(ur T) + ... (B.4)

a a0 aft - 0 0

Similarly, we form

a2 x r/aua au Or Or (UrUT)
0 Or r

a3xr/au aauuT = r  + . (B.6)a/

etc., where the dots indicate higher-order terms.

At the point P, where u =u , we have from (B.3)-(B.6), respectively:
0

r r
x x (B.3')

axr/au' =A r  (B.4')

2r a
a xr/au au = 0 r (8.5')

a3xr/uauau T  . r  (B.6')

etc., confirming the coefficient sets in the Taylor series expansion (B.3).

Section 3.1 has introduced A r as the "design tensor", expressible via thea
components of u orthonormal vectors 2, J, ... spanning the hyperpiane tangent to

the model surface at P:

axr/aua = Ar = 2 r 2 + jr + . (B.7)

a a a

which transforms like a space tensor in the contravarlant Indices, and like a

surface tensor in the covariant Indices. Any set of orthonormal vectors

spanning this hyperplane is acceptable. In [Hotine, 1969] the tensor axr/aua

was presented for n=3 and u=2. On the other hand, 0r *r ... are not'a ' aj .. reno

tensors. For example, from equation 6.14 In [Hotine, 1969] it follows that

a 2x r/au aup = Ar - rA As + rT Ar
0~ St a ap T'

where Ar, the surface covariant derivative of Ar with respect to u . is a

tensor, but a 2 x /au aau=Oa is not, due to the Christoffel symbols.

At the initial point P, a set of n orthonormal vectors 2, J, .... .

spans the n-dimensional observational space. A subset of u vectors, 2, j.....

spans the above hyperplane, while the remaining n-u vectors, v ..... are normal

to it. The observational-space metric tensor at P is expressible by
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gsr 2s 9r + Js Jr + + + L
s Lr + . (B.8)

The model-surface metric tensor at P is

a = a 2 +j j+ A A r  (B.9)
Oa , a " gs a

which follows from (B.7) and (B.8). In matrix notation, a k would be

represented by a positive-definite matrix of dimensions (uxu).

Next, consider another u-dimensional surface embedded in the observational

space and containing the point P. The independent variables (u ), a=1,2,....u

are again adopted to be the surface coordinates, and their values at P are again
a
u0. The spatial description of the new surface Is provided by

x~r = xr (U2 a r +Ar (ua_ a (B. 10)a

Contrasted to (B.4)-(B.6), the differentiation now yields

ax, r/aa = Ar constant (B.1l)
a

a 2x r/au aaup = 0 , a3xr /aua aupauT 0 , (B.12a,b)

etc. Similar to (8.3') and (B.4'), at P we have x'r=xr and ax'r/aua=Ar
0 awhile all of r (D re zero. Since A r In (B.11) is constant, and

ao' a~r' ... a ro. a
gsr is constant by definition, the metric tensor for the new surface is

a As A Ar constant (B. 13)a = Agsr a'

implying that the surface is flat. It is thus a hyperplane, which we call the

"model plane". Necessarily, the hyperplane tangent to the model plane at P is

the model plane itself.

In analogy to (B.7), the constant tensor in (B.11) is written in the form

ax,r/aua - Ar = , r + ,r j + (B.14)
a a a

where the orthonormal vectors 2', J', ... lie entirely in the model plane.

Since the tensors in (B.7) and (B.14) are equal, we anticipate that the vector

sets I, J, .. . and t', j', ... can be made identical, and thus that the model

plane Is tangent to the model surface at P. This follows from the facts below:

1) The independent variables (u a  represent the coordinate system for both the

model surface and the model plane;
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2) The model-surface metric tensor a a at P Is the same as Its (constant)

counterpart for the model plane; and

3) The model-surface design tensor Ar at P Is the same as Its (constant)
a

counterpart for the model plane.

In carrying out the proof, we let the coordinate differences dua represent

an Infinitesimal model-plane displacement from P along the unit vector 2'. The

contravariant components of ' in model-plane coordinates are 2' a=dua/ds, where

ds is the length of the displacement obtained from ds2 =dua dua . Similarly,
a

one formulates J' etc., where

,a , = 1 , a
2 1 , 2'a J' = 0.....
a

Due to Item 1, the set dua can also represent an infinitesimal displacement in

the model surface. We denote the length of this displacement by df, and a unit

vector in the direction of the displacement by 2. The contravariant components

of e in model-surface coordinates are a =dua/d. Due to item 2, we have dg=ds

and thus C¢=Va. In the same way, j a=j,.... . Due again to Item 2, we have
S=2'' j=ja..... so that

a

Accordingly, the thus constructed vectors 2, J, ... behave like model-surface

orthonormal vectors at P.

With regard to the spatial configuration of 2, j..... item 3 reads

r ,a + jr Ja + .... Vr Ia + Pr ja +"

where (B.7) and (B.14) have been utilized together with the fact that 2;=a
a a

'=..... Upon successive contractions with 2 a, a,. it follows that

I r , 1r B 1r

From the equality of their space components we deduce that the vectors 2 and 2',

J and J', etc., are identical. Since 2, J, ... are tangent to the model surface

at P, and 2', j', ... lie entirely in the model plane, the model plane defined

by (B.10) is seen to be tangent to the model surface defined by (B.3). The

point of tangency, P, is described by ua in the common surface coordinate

system {u a), and by xr=x r(u a) in the svace coordinate system (xr).
0 0
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APPENDIX C

LINKS BE WIEEN OBSRVATIONAL-SPACE, NODEL-PLA.R,

AND ODEL-SURFACE COORDINATE DIFFEENCES

If, as in the current study, the underlying observational space is flat and

the space coordinate system (x r) is such that

gar a constant ,

In analogy to Cartesian coordinates it can be shown that

Axr A p, (C.1)

where the set Axr contains the observational-space coordinate differences

between two points, and Apr symbolizes the difference, in contravariant

components, between the position vectors of these two points. The set Apr gives

rise to the tensor equation

Apr As kr, (C.2)

where kr represents the contravariant components of the unit vector k in the

direction of Ap, and As Is the length of Ap. Just as in Cartesian coordinates,

the position vector p belonging to any point in space can be freely parallel-

transported from that point to an arbitrary location, and the same can be said

about Ap and k.

Since we shall use exclusively (x r) as the observational-space coordinate
r rsystem, we write Ax for Ap , although in general coordinates (C.I) would not

hold true (it is not a tensor equation). From (C.2) we deduce

As =Ax r k r (1/As) Axr Ax

or

As2 Ax Ax gsr ( (C.3)

where

Ax gsr AX r (C.4)

a sr
Equation (C.4) is written in lieu of the tensor equation Ap sgsr Apr.
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Similar considerations apply for the model plane with a aEconstant as given

by (B.13). In analogy to (C.1) and (C.2), we thus write

Aua = APa, (C.5)

Ap =a s k (C.6)

Here the symbols 6p, As, and k are used independently of the same symbols

appearing in (C.1,2). In analogy to (C.4), we also have

Au = $a Aua , (C.7)

representing the tensor equation Ap =aa P Ap

In linking observational-space and model-surface coordinate differences we

shall proceed via the model plane, where we can take advantage of the property

(C.5). Let Ax' rep=.sont a model-plane vector emanating from P, which, in

Fig. 1, is the vector symbolized by the arrow PP Upon considering 2, J,

to be orthonormal vectors spanning the model plane, it follows that

Ax' r = a r + b r + (C.8)

where a, b, ... are scalars. If the same vector should be described by model-

plane rather than observational-space components, we denote it Au and write

Aua = a 9 g * b Ja +... (C.9)

Due to (B.14), presented here as

Ar = 2 r a + jr j + "'"' (C.lO)
a a a

one obtains

,,r Ar A ua
, (C.11)

a

where Ax'r symbolizes the contravariant components of the above vector as well

as the corresponding coordinate differences in the observational-space

coordinates, and Aua symbolizes such components and such coordinate differences

in the model-plane coordinates.

Since both (C.8) and (C.9) hold true also when the indices are lowered, we

readily deduce that

s r

AuB = A g Ar (.12)
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This relation can also be obtained from (C.11), upon contracting the latter with

A g and recalling (C.7) together with (B.13). As a special benefit, If Ax'

were replaced by a general space vector Ax, the left-hand side of (C.12) would

describe a projection of that vector onto the model plane.

To confirm this property, suppose that the contravariant components of a

space vector are ,x'r +x.. r , where

,, r . q Vr + ...

In terms of Fig, I, we can imagine Ax" as a vector perpendicular to the model

plane at P2. It then follows that

Au As 9 (Ax~r+Ax,,r) = A' A,r (.3Au = A gs (c'r+,r= A5 gs Axr. (C.13)

0 sr 9 s~r

In other words, if the components Ax' r .. ,,r are known, (C.13) yields the model-

plane covariant components of the projected vector, Au The observational-

space contravariant components of the projected vector, Ax ' , can be obtained

via (C.11) upon first utilizing

Au0 aag Aug , (C.14)

where aap Is the model-plane associated metric tensor (such that aaa 
6 a).

One feature of equations (C.13) and (C.14) is that they demonstrdte how the

observational-space components of a vector can be converted if) : model-plane

coordinate differences.

We shall next present a spatial link between the model surface and the

model plane by relating corresponding points In the two surfaces. In Fig. 1,

a pair of such points is depicted by P and P Their correspondence is
a

understood in the sense that the same set of values u represents the model-

surface coordinates of P and the model-plane coordinates of P In the

observational space, the points P and P2 are identified by their position-

vector components x and x 'r , respectively. By subtracting from either of the

Ax r , xr - xr ,Xr . x r _-
0 0

These sets of contravariant components, which represent also sets of coordinate

differences, identify the vectors Ax and Ax' symbolized in Fig. I by the arrows

46



PP and PP2. respectively. Upon denoting

Aua .ua -uaAU = U _ U

0

the compatison of (B.3) and (B.10) reveals that

r  r r (C.15)
Ax -Ax' + V (.

where the contravariant components vr of the vector v are given as

= (1/2) 0r Au  Au + (1/6) 0 r Aua AuO Au + (C.16)

The vector v provides the desired link between the two surfaces.

In considering that the symbols x are interchangeable here with p, the

relation (C.15) is a tensor equation. On the other hand, since Or *r
S'ap' a=r

... are not tensors, (C.16) Is not a tensor equation, but this does not detract

from its usefulness. We observe that tensor considerations have been important

mainly in deriving (C.13), where the symbols Au and Ax' represent the same

geometrical object. The tensor contraction with aa P in (C.14) then yields Aua ,

which identifies both the set of contravariant components of the vector PP2 and

the set of model-plane coordinate differences between P2 and P. Due to the

definition of (u a, the set Aua represents also model-surface coordinate

dLifferences between P and P.
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APPENDIX D

MATRIX NOTATION

if needed, the results of this study can be transcribed into matrix

notation. This is greatly facilitated by the close correspondence between

tensor contractions and matrix multiplications. In the cases of 0r and
0 ar .respectively, we introduce three- and four-dimensional arrays into the

matrix context. In transcribing the corresponding quantities, the indices will

be dropped. The letter symbols will be retained, but * will be attached to
rsquantities corresponding to purely covariant tensors. Thus, the tensors g

Ar ao r r ax
Aa, a , axr . Axr , Au . etc., will become g, A, a, 6x, Ax, Au, etc., while the

tensors gsr' a O, AuP, etc.. will become g*, a*, Au*, etc. The first index

identifies the rows and the second index, if present, identifies the columns.

If the indices are mixed, as in Ar, the upper (contravariant) index i

regarded as the first and the lower (covariant) index is regarded as the second.

The sets 0 r and Or will be transcribed respectively as a three-

dimensional array 0 of dimensions (nxuxu) and a four-dimensional array 0 of

dimensions (nxuxuxu). In analogy to the matrix A of dimensions (nxu) evaluated

at P according to

1 2
A _[ax/au , ax/au, ]

2 2
where x represents the observables and u , u .... are the individual parameters,

the arrays 0 and 0 are formed at P as

1 2 1 20 a (aA/au , aA/au , ... ] , _= [an/au , an/au , .... I

Upon considering the order of contractions, it becomes clear that the expression

A gsr corresponds to ATg* (and not, for example, to Ag* which Is not even
0 sr Ar~
defined). The contractions of the kind Oag(Au ) and (x s)40 ar will beTr

transcribed as Q(Au) and (6x*) 0, respectively.

In dealing with quantities related to the observables, such as x r x r

xo'r, xr , Axr , Bx , etc., which in the geometrical context of the

observational space represented sets of coordinates or sets of coordinate

differences equivalent to tensors, we again drop the indices and use the symbols

XQ, x. x , dx, Ax, dx, etc. The column vectors (of n elements) xQ, x, and xa

denote respectively the actual observations, the adjusted observations, and the
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observables consistent with the Initial set of parameters. The column vectors

6x, Ax, and 6x, the latter containing the negative residuals, follow

respectively from the relation below (8), from (4), and from (14):

6x x Q - x °

Ax x - x a ax x -x= 6x - Ax

Quantities related to the parameters, such as u a , u , Au , etc., which in the
0

geometrical context of the model plane are sets of coordinates or set- of

coordinate differences equivalent to tensors, are symbolized by u, , Au. etc.

The column vectors (of u elements) u and u denote respectively the adjusted0

parameters and the initial values of parameters, while the column vector Au

follows from (1b) as

Au - U - u
0

Introducing also quantities in parentheses, in analogy to Ax and 3x we

have

(Ax) = (x) - x0 , (x) E xQ - (x) = 6x - (Ax)

Moreover, In analogy to Au we write

(Au) = (u) - u0

The intermediate values such as (u) and (x) follow from these equations as

(u)=u +(Au) and (x)=x +(Ax). Similar transcriptions apply also for the

relationships involving A(Au a ) and A(Axr ), such as presented in (15) and (19a).

respectively, but it is unnecessary to write them explicitly since the pattern

explained above is general and straightforward.

We next transcribe the key formulas associated with the Initial iteration

of Section 3.1. Equations (6), (8). and (9) correspond to

a* = AT g* A (D.1)

T
(Au*) = A g* 6x (Au) a (Au*) . (D.2ab)

where a is the inverse of a*. Further, the formulas (lOa,b) become

T
g' - A a A g* = g* g' g* , (D.3a.b)
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while the relations corresponding to (lla,b) are

g" = g - g' , g*" g* - g*' . (D.4ab)

The adjustment role of the matrices g', g*', g", and g*" of dimensions (nxn) has

already been explained. Similar to the relationship between the matrices a and

a* of dimensions (uxu), the matrices g and g* of dimensions (nxn) are inverses

of each other.

Finally, we present the system (23a-c) In matrix notation:

[(a*) - (x*) T 0 - (3x*)T 0 (Au)] A(Au) (A)T (&x*) , (D.5a)

where

T
(a*) = (A) g* (A) , (6x*) = g* (Ox) (D.5b,c)

We call (D.Sa) the modified normal equations, and the matrix on the left-hand

side, denoted {a*), the matrix of modified normal equations. For a repeated

application of (D.5a-c), (Au) is updated through the algebraic addition of

A(Au). All the other quantities in parentheses are updated as well, while the

arrays 0 and 0 are treated as constant. Depending on the assumption about the

size of the residuals, (D.5a) can be simplified by leaving out the term with 0.

If both terms wit , 0 or 0 are left out, the resulting equation characterizes the

standard adjustment approach. The final updated values are denoted by overbars.

The variance-covariance and the weight matrices of adjusted quantities are

represented by (D.1), (D.3a,b), and (D.4a,b), with all the symbols except g and

g* overbarred, and with a computed as the inverse of a*.
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